(19) 日本国特許庁(JP)

(12) 特 許 公 報(B2)

(11)特許番号

特許第5367269号 (P5367269)

(45) 発行日 平成25年12月11日(2013.12.11)

(24) 登録日 平成25年9月20日(2013.9.20)

(51) Int.Cl.

FI

A 6 1 B 17/072 (2006.01)

A 6 1 B 17/10 3 1 O

請求項の数 11 外国語出願 (全 28 頁)

(21) 出願番号 特願2008-2020 (P2008-2020) (22) 出願日 平成20年1月9日 (2008.1.9) (65) 公開番号 特開2008-237881 (P2008-237881A) (43) 公開日 平成20年10月9日 (2008.10.9)

審査請求日 平成23年1月7日 (2011.1.7)

(31) 優先権主張番号 11/651,715

(32) 優先日 平成19年1月10日 (2007.1.10)

(33) 優先権主張国 米国(US)

前置審査

(73)特許権者 595057890

エシコン・エンドーサージェリィ・インコ

ーポレイテッド

Ethicon Endo-Surger

y, Inc.

アメリカ合衆国、45242 オハイオ州 、シンシナティ、クリーク・ロード 45

45

(74)代理人 100088605

弁理士 加藤 公延

(74)代理人 100130384

弁理士 大島 孝文

最終頁に続く

(54) 【発明の名称】制御ユニットとセンサトランスポンダとの間で無線通信を行う外科器具

(57)【特許請求の範囲】

【請求項1】

外科器具において、

少なくとも 1 つのセンサトランスポンダを有するエンドエフェクタと、

前記エンドエフェクタに接続された遠位端部を有するシャフトと、

前記シャフトの近位端部に接続されたハンドルであって、制御ユニットを有する、ハンドルと、

を含み、

前記制御ユニットは、少なくとも1つの誘導結合によって前記少なくとも1つのセンサトランスポンダと通信し、

前記シャフトは、前記少なくとも 1 つのセンサトランスポンダに信号を放射し、前記少なくとも 1 つのセンサトランス<u>ポンダ</u>から放射された信号を受信すること<u>でア</u>ンテナとして機能し、

前記シャフトの外側部分、および前記エンドエフェクタの少なくとも1つの構成要素は、導電性であって、相互に電気的に接続されており、

前記センサトランスポンダは、非導電性材料から形成されたカートリッジ内に位置付けられていて、前記エンドエフェクタの前記構成要素から電気的に絶縁されるように前記構成要素内に位置付けらている、外科器具。

【請求項2】

請求項1に記載の外科器具において、

前記ハンドルは、

前記制御ユニットと通信するモータであって、

前記モータは、前記シャフトの主駆動シャフト組立体を駆動し、

前記主駆動シャフト組立体は、エンドエフェクタを駆動する、

モータと、

前記モータに電力を供給するためのバッテリと、

をさらに含む、外科器具。

【請求項3】

請求項2に記載の外科器具において、

前記ハンドルは、

操作者によって引かれると、前記エンドエフェクタに前記エンドエフェクタ内に位置付 けられた物体をクランプさせる閉鎖トリガーと、

操作者によって引かれると前記モータを作動させる、前記閉鎖トリガーとは別個の発射 トリガーと、

をさらに含む、外科器具。

【請求項4】

請求項1に記載の外科器具において、

前記制御ユニットは、

プロセッサと、

前記プロセッサと通信するメモリと、

信号の受信および送信のために前記プロセッサと通信する誘導素子と、

を含む、外科器具。

【請求項5】

請求項1に記載の外科器具において、

前記外科器具は、前記シャフトを回転させるための少なくとも1つの回転接合部を含み

前記外科器具は、

前記回転接合部の遠位側の前記シャフト内に配置され、前記制御ユニットに誘導結合さ れた第1の誘導素子と、

前記シャフト内に配置され、前記少なくとも1つのセンサトランスポンダに誘導結合さ れた第2の誘導素子と、

をさらに含む、外科器具。

【請求項6】

請求項5に記載の外科器具において、

前記第2の誘導素子は、前記エンドエフェクタに近接して配置され、

前記第2の誘導素子は、前記シャフト内に配置された可撓性の導電ワイヤによって前記 第1の誘導素子に接続されている、外科器具。

【請求項7】

請求項6に記載の外科器具において、

40 前記シャフトは、前記第1の誘導素子と前記第2の誘導素子との間の関節動作ピボット を含む、外科器具。

【請求項8】

請求項1に記載の外科器具において、

前記少なくとも1つのセンサトランスポンダは、磁気抵抗センサを含む、外科器具。

【請求項9】

請求項1に記載の外科器具において、

前記少なくとも1つのセンサトランスポンダは、RFIDセンサを含む、外科器具。

【請求項10】

請求項1に記載の外科器具において、

前記少なくとも1つのセンサトランスポンダは、電気機械センサを含む、外科器具。

10

20

30

【請求項11】

外科器具において、

少なくとも 1 つのセンサトランスポンダを有するエンドエフェクタと、

前記エンドエフェクタに接続された遠位端部を有するシャフトと、

少なくとも1つの誘導結合によって前記少なくとも1つのセンサトランスポンダと通信 する制御ユニットと、

を含み、

前記シャフトは、前記少なくとも1つのセンサトランスポンダに信号を放射し、前記少なくとも1つのセンサトランス<u>ポンダ</u>から放射された信号を受信すること<u>でア</u>ンテナとして機能し、

<u>前記シャフトの外側部分、および前記エンドエフェクタの少なくとも1つの構成要素は</u> 、導電性であって、相互に電気的に接続されており、

前記センサトランスポンダは、非導電性材料から形成されたカートリッジ内に位置付けられていて、前記エンドエフェクタの前記構成要素から電気的に絶縁されるように前記構成要素内に位置付けらている、外科器具。

【発明の詳細な説明】

【開示の内容】

[0001]

〔関連出願〕

本願は、参照して開示内容を本明細書に組み入れる以下に示す同時出願の米国特許出願 に関連する。

に関連する。 1.ジェイ・ジョーダーノ(J. Giordano)らによる米国特許出願第11/651807 号(名称:「制御ユニットと遠隔センサとの間で無線通信を行う外科器具(surgical ins trument with wireless communication between control unit and remote sensor)」)

(代理人整理番号: 0 6 0 3 3 9 / E N D 5 9 2 4 U S N P)

2. ジェイ・ジョーダーノ (J. Giordano) らによる米国特許出願第 1 1 / 6 5 1 8 0 6 号 (名称:「制御ユニットとエンドエフェクタとの間で無線通信するための素子を備えた外科器具 (surgical instrument with ELEMENtS TO communicatE between control unit and END EFFECTOR)」) (代理人整理番号: 0 6 0 3 4 0 / END 5 9 2 5 USNP)

3 . エフ・シェルトン(F. Shelton)らによる米国特許出願第11/651768号(名称:「外科器具におけるカートリッジの再使用の防止(PREVENTION OF CARTRIDGE REUSE IN A SURGICAL INSTRUMENT)」)(代理人整理番号:060341/END5926US

4. ジェイ・スウェイズ (J. Swayze) らによる米国特許出願第11/651771号 (名称:「滅菌後の外科器具のプログラミング (post-sterilization programming of surgical instruments)」) (代理人整理番号:060342/END5927USNP) 5. エフ・シェルトン (F. Shelton) らによる米国特許出願第11/651788号(名称:「インターロックおよびこのインターロックを含む外科器具 (INTERLOCK AND SURGIC AL INSTRUMENT INCLUDING SAME)」) (代理人整理番号:060343/END5928USNP)

6. エフ・シェルトン (F. Shelton) らによる米国特許出願第11/651785号(名称:「バッテリ性能を向上させた外科器具(SURGICAL INSTRUMENT WITH ENHANCED BATTER Y PERFORMANCE)」)(代理人整理番号:060347/END5931USNP)

[0002]

〔発明の背景〕

内視鏡外科器具は、小さな切開部が術後の回復時間を短縮し合併症を低減するため、従来の開放外科装置よりも好まれる場合が多い。したがって、トロカールのカニューレによって所望の外科部位に遠位エンドエフェクタを正確に配置するのに適した様々な内視鏡外科器具の開発が著しく進展した。このような遠位エンドエフェクタは、診断効果または治療効果を果たすべく様々な方式で組織に係合する(例えば、エンドカッター、把持器、カ

10

20

30

40

ッター、ステープラ、クリップアプライヤ、アクセス装置、薬物 / 遺伝子治療送達装置、 および超音波、RF、レーザーなどを用いたエネルギー装置)。

[0003]

既知の外科ステープラは、組織に長さ方向の切開部を作ると同時にその切開部の両側にステープルを列状に留めるエンドエフェクタを含む。エンドエフェクタは、器具が内視鏡や腹腔鏡に用いられる場合、カニューレの通路内を通過できる一対の協働するジョー部材を含む。一方のジョー部材は、横方向に離隔した少なくとも2列のステープルを有するステープルカートリッジを受容する。他方のジョー部材は、カートリッジ内のステープルの列に整合したステープル形成ポケットを有するアンビルを画定している。この器具は、複数の往復するくさびを含む。これらのくさびは、遠位側に駆動されると、ステープルカートリッジの開口を通過して、ステープルを支持しているドライバに係合し、ステープルをアンビルに向かって発射させる。

[0004]

内視鏡用途に適した外科ステープラの例が、閉じる動作と発射する動作を別個に行うエンドカッターを開示する米国特許第5,465,895号に記載されている。この装置を使用する医師は、発射の前に組織を位置付けるために組織に対してジョー部材を閉じることができる。医師は、ジョー部材が組織を適切に把持していると判断したら、1回の発射ストロークで外科ステープラを作動させて、組織を切断し、ステープル留めすることができる。切断とステープル留めを同時に行うことにより、それぞれ切断およびステープル留めのみを行う別個の外科器具を用いてこれらの処置を連続的に行う場合に生じうる合併症を防止することができる。

[0005]

発射する前に組織に対して閉じることができる1つの具体的な利点は、医師が、十分な量の組織が対向するジョーの間に把持されたことを含め、切断のために所望の位置に達成されたことを、内視鏡によって確認することができることである。このように確認しない場合は、対向したジョーが、互いに近付きすぎて、特に遠位端部で圧迫され、切断された組織を有効にステープル留めすることができない。これとは反対に、クランプされた組織の量が過剰であると、詰まって不完全な発射となる。

[0006]

内視鏡ステープラ / カッターは、世代毎に複雑さと機能が増してきている。この理由の1つは、全てまたは大多数の外科医が操作できるより低い発射力(FTF)が求められていることによる。より低いFTFのための既知の1つの解決策は、 CO_2 または電気モータの使用である。このような装置は、別の点から、従来の手動装置よりも格段に優れているとは言えない。外科医は通常、大抵の外科医が可能な上限の力(通常は約15~30ポンド(約6.9~約13.6 kg))で切断 / ステープルサイクルが完了したことを確認するために、ステープルの形成でエンドエフェクタが受ける力に比例した力分布を感じることを好む。また、外科医は通常、ステープル取付けの制御を維持すること、装置のハンドルで感じる力が大きすぎる場合または他の臨床上の理由で、いつでも停止できることを望む。

[0007]

この要求を満たすべく、補助電源が器具の発射を補助する、いわゆる「動力補助」内視鏡外科器具が開発された。例えば、ある種の動力補助装置では、使用者が発射トリガーを引くと、モータが補助電力を入力に供給する。このような装置は、切断操作を完了するために、操作者が加える必要がある発射の力を低減するべく、荷重のフィードバックおよび制御を操作者に伝達することができる。このような1つの動力補助装置が、参照して開示内容を本明細書に組み入れる、2006年1月31日出願のシェルトン(Shelton)らによる米国特許出願第11/343,573号(名称:「荷重のフィードバックを与えるモータ駆動外科切断/締結器具(Motor-driven surgical cutting and fastening instrument with loading force feedback)」)に開示されている。

[0008]

10

20

30

このような動力補助装置は、純粋に機械的な内視鏡外科器具が含まないセンサおよび制御システムなどの他の構成要素を含む場合が多い。外科器具にこのような電子機器を使用する際の問題点は、特に外科器具に自由回転接合部が設けられている場合、電力および/またはデータをセンサに供給すること、またはセンサから受け取ることである。

[0009]

〔発明の概要〕

一つの一般な態様では、本発明は、内視鏡器具または関節鏡器具などの外科器具に関する。一実施形態によると、この外科器具は、受動的に電力の供給を受ける少なくとも1つのセンサトランスポンダを有するエンドエフェクタを含む。外科器具はまた、エンドエフェクタに連結された遠位端部を有するシャフト、およびこのシャフトの近位端部に連結されたハンドルも含む。このハンドルは、少なくとも1つの誘導結合によってセンサトランスポンダと通信する制御ユニット(例えば、マイクロコントローラ)を含む。さらに、外科器具は、シャフトを回転させるために回転接合部を含むことができる。このような場合、外科器具は、回転接合部の遠位側のシャフト内に配置され、制御ユニットに誘導結合された第1の誘導素子と、シャフト内に遠位側に配置され、少なくとも1つのセンサトランスポンダに誘導結合された第2の誘導素子を含むことができる。第1の誘導素子と第2の誘導素子は、有線の物理的接続によって接続することができる。

[0010]

このように、制御ユニットは、有線配線を維持するのが困難となることがある回転接合部のような複雑な機械接合部を通る直接的な有線接続を用いずに、エンドエフェクタ内のトランスポンダと通信することができる。加えて、誘導素子間の距離が固定されており、既知なので、この誘導結合を、エネルギーの誘導伝送にとって最適にすることができる。また、比較的低い出力信号を用いて、外科器具の使用環境における他のシステムとの干渉を最小限にするために、この距離が比較的短くすることができる。

[0011]

本発明の別の一般的な態様では、外科器具の導電シャフトは、制御ユニットがセンサトランスポンダへ、およびセンサトランスポンダから信号を無線通信するためのアンテナとして機能することができる。例えば、センサトランスポンダを、プラスチックカートリッジなどのエンドエフェクタの非導電構成要素上または非導電構成要素内部に配置して、センサトランスポンダを、エンドエフェクタおよびシャフトの誘導素子から絶縁することができる。加えて、ハンドル内の制御ユニットは、シャフトに電気的に結合することができる。このように、シャフトおよび/またはエンドエフェクタは、制御ユニットからセンサに信号を放射し、かつ/またはセンサから放射された信号を受信することで、アンテナとして機能することができる。このような設計は、データ信号を通信するためにセンサと制御ユニットとの間の直接的な有線接続の使用が困難となる複雑な機械接合部(回転接合部など)を有する外科器具に特に有用である。

[0012]

別の実施形態では、シャフトおよび / またはエンドエフェクタの構成要素は、制御ユニットに信号を放射し、かつ制御ユニットから放射された信号を受信することで、センサのためのアンテナとして機能することができる。このような実施形態によると、制御ユニットは、シャフトおよびエンドエフェクタから電気的に絶縁されている。

[0013]

別の一般的な態様では、本発明は、器具がパッケージングされて滅菌された後にプログラミング装置によってプログラムすることができるプログラム可能な制御ユニットを含む外科器具に関する。このような一実施形態では、プログラミング装置は、無線で制御ユニットをプログラムすることができる。制御ユニットは、プログラミング動作の際に、プログラミング装置からの無線信号によって受動的に電力の供給を受けることができる。別の実施形態では、滅菌容器は、外科器具が滅菌容器内に受容されたまま、プログラミング装置を外科器具に接続できるように、接続インターフェースを含むことができる。

[0014]

10

20

30

20

30

40

50

〔詳細な説明〕

本発明の様々な実施形態を、添付の図面を参照しながら例として説明する。

[0015]

本発明の様々な実施形態は、少なくとも1つの遠隔センサトランスポンダ、および制御ユニットからこのトランスポンダに電力および / またはデータ信号を送信するための手段を有する外科器具に関する。本発明は、内視鏡または関節鏡外科器具などの、少なくとも1つのセンサトランスポンダを含むあらゆるタイプの外科器具に用いることができるが、自由回転接合部などの外科器具の特徴がセンサへの配線を妨げるまたは困難にする外科器具に特に有用である。システムの態様を説明する前に、本発明の実施形態を用いることができるあるタイプの外科器具、すなわち内視鏡ステープル留め / 切断器具(エンドカッター)を、まず一例として説明する。

[0016]

図1および図2は、ハンドル6、シャフト8、および、関節動作ピボット14でシャフト8に旋回可能に接続された関節動作エンドエフェクタ12を含む内視鏡外科器具10を示している。エンドエフェクタ12の正確な配置および向きは、(1)シャフト8の自由回転接合部29で閉鎖チューブ(詳細は図4および図5との関連でより詳細に後述するを回転させてエンドエフェクタ12を回転させるための回転ノブ28、および(2)関節動作ピボット14を中心にエンドエフェクタ12を回転関節動作させるための関節動作制御部16を含め、ハンドル6に設けられた制御部によって容易に行うことができる。例示されている実施形態では、エンドエフェクタ12は、組織をクランプ、切断、およびステープル留めするためのエンドカッターとして機能するように構成されているが、他の実施形態では、把持器、カッター、ステープラ、クリップアプライヤ、アクセス装置、薬物/遺伝子治療装置、および超音波、RF、またはレーザー装置などの他のタイプの外科器具のエンドエフェクタなどの様々なタイプのエンドエフェクタを用いることができる。

[0017]

器具10のハンドル6は、エンドエフェクタ12を作動させるための閉鎖トリガー18および発射トリガー20を含むことができる。様々な外科処置に用いられるエンドエフェクタを有する器具は、エンドエフェクタ12を作動させるために、異なる数または種類のトリガーまたは他の適当な制御部を有することができることを理解されたい。エンドエフェクタ12は、図示されているように、好ましくは細長いシャフト8によってハンドル6から離隔している。一実施形態では、外科器具10の医師すなわち操作者が、関節動作制御部16を用いてシャフト8に対してエンドエフェクタ12を関節動作させることができる。この詳細が、参照して開示内容を本明細書に組み入れる、2006年1月10日に出願された、ジョフレイ・シー・ヒューイ(Geoffrey C. Hueil)らによる係属中の米国特計出願第11/329,020号(名称:「関節動作エンドエフェクタを備えた外科器具(Surgical Instrument Having An Articulating End Effector)」)に開示されている

[0018]

エンドエフェクタ12は、この例では、特に、ステープル溝型部材22、およびアンビル24などの旋回可能なクランプ部材を含む。ステープル溝型部材22とアンビル24は、エンドエフェクタ12内にクランプされた組織の効果的なステープル留めおよび切断を確実にする間隔で維持される。ハンドル6は、ピストルグリップ26を含む。医師が、閉鎖トリガー18をピストルグリップ26に向かって旋回させて(pivotally)引いて、エンドエフェクタ12のステープル溝型部材22に向かってアンビル24をクランプまたは閉鎖して、アンビル24と溝型部材22との間に位置付けられた組織をクランプする。発射トリガー20は、閉鎖トリガー18のさらに外側(outboard)に位置する。閉鎖トリガー18が閉鎖位置にロックされると、発射トリガー20がピストルグリップ26に向かって僅かに回転し、操作者が片手で操作することができる。次に、操作者が、発射トリガー20をピストルグリップ26に向かって旋回させて引いて、エンドエフェクタ12内にクランプされた組織のステープル留めおよび切断を行うことができる。米国特許出願第11/3

20

30

40

50

43,573号に、閉鎖トリガー18のロックおよびロック解除のための様々な構造が示されている。他の実施形態では、例えば、対向したジョーなどのアンビル24以外の異なるタイプのクランプ部材を用いることができる。

[0019]

本明細書で用いる用語「近位」および「遠位」は、器具10のハンドル6を把持している医師を基準に用いていることを理解されたい。したがって、エンドエフェクタ12は、より近位側のハンドル6に対して遠位側である。さらに、分かりやすくするために、「垂直」および「水平」などの空間用語を図面に対して用いることを理解されたい。しかしながら、外科器具は、様々な向きおよび位置で用いることができ、このような語は、限定的および絶対的であることを意図するものではない。

[0020]

まず、閉鎖トリガー18を作動させることができる。医師が、エンドエフェクタ12の位置付けに満足したら、医師は、閉鎖トリガー18を、ピストルグリップ26に近接した完全に閉じたロック位置まで引き戻すことができる。次に、発射トリガー20を作動させることができる。医師が圧力を除去すると、発射トリガー20は、開位置(図1および図2を参照)に戻る。この例では、ハンドル6のピストルグリップ26に設けられたハンドル6の解除ボタン30を押圧すると、ロックされた閉鎖トリガー18を解除することができる。

[0021]

図3は、様々な実施形態に従ったエンドエフェクタ12の組立分解図である。例示され ている実施形態に示されているように、エンドエフェクタ12は、上記した溝型部材22 およびアンビル 2 4 に加えて、切断器具 3 2 、スレッド 3 3 、溝型部材 2 2 内に取外し可 能に配置されたステープルカートリッジ34、および螺旋ねじシャフト36を含むことが できる。切断器具32は、例えば、ナイフとすることができる。アンビル24は、溝型部 材22の近位端部に接続されたピボット点25で旋回させて開閉することができる。アン ビル24は、このアンビル24を開閉するために機械閉鎖システム(詳細を後述)の構成 要素内に挿入されるタブ27をその近位端部に備えることもできる。閉鎖トリガー18が 作動する、すなわち器具10の使用者によって引かれると、アンビル24が、クランプす なわち閉位置にピボット点25を中心に旋回することができる。エンドエフェクタ12の クランプに満足したら、操作者は、詳細を後述するように、発射トリガー20を作動させ て、ナイフ32およびスレッド33を溝型部材22に沿って長さ方向に移動させ、エンド エフェクタ12内にクランプされた組織を切断することができる。スレッド33の溝型部 材22に沿った運動により、ステープルカートリッジ34のステープルが、閉じたアンビ ル24に向かって切断された組織内を進み、アンビル24に曲げられて切断された組織を 閉じる。参照して開示内容を本明細書に組み入れる米国特許第6,978,921号(名 称:「Eビーム発射機構を含む外科ステープラ器具(Surgical stapling instrument inc orporating an E-beam firing mechanism)」)に、このような2ストロークの切断/締 結器具が詳細に開示されている。スレッド33をカートリッジ34の一部とし、切断動作 の後にナイフ32が引き戻されても、スレッド33が引き戻されないようにすることがで きる。溝型部材22およびアンビル24は、詳細を後述するように、エンドエフェクタ内 のセンサと通信するアンテナの一部として機能できるように導電材料(金属など)から形 成することができる。カートリッジ34は、非導電材料(プラスチックなど)から形成す ることができ、センサは、詳細を後述するように、カートリッジ34に接続するかまたは その内部に配置することができる。

[0022]

ここに開示する外科器具10の実施形態は、切断された組織をステープル留めするエンドエフェクタ12を用いているが、他の実施形態では、切断された組織を締結またはシールするための異なる技術を用いることができることに留意されたい。例えば、切断された組織を閉じるためにRFエネルギーまたは接着剤を用いるエンドエフェクタを用いることができる。イエーツ(Yates)らによる米国特許第5,709,680号(名称:「電気

20

30

40

50

外科止血装置(Electrosurgical Hemostatic Device)」)、およびイエーツ(Yates)らによる米国特許第5,688,270号(名称:「埋込みおよび / またはオフセット電極を備えた電気外科止血装置(Electrosurgical Hemostatic Device With Recessed And/Or Offset Electrodes)」)に、RFエネルギーを用いて切断された組織を閉じる切断器具が開示されている。参照して本明細書に組み入れるモーガン(Morgan)らによる米国特許出願第11/267,811号およびシェルトン(Shelton)らによる米国特許出願第11/267,363号に、接着剤を用いて切断された組織を閉じる切断器具が開示されている。したがって、本明細書では、切断 / ステープル留め動作などについて述べているが、これは例示的な実施形態であり、限定することを意図するものではないことを理解されたい。他の組織締結技術を用いることもできる。

[0023]

図4および図5は、様々な実施形態に従ったエンドエフェクタ12およびシャフト8の 組立分解図であり、図6は側面図である。例示されている実施形態に示されているように . シャフト8は、近位閉鎖チューブ40、およびピボットリンク44によって旋回可能に 連結された遠位閉鎖チューブ42を含むことができる。遠位閉鎖チューブ42は、アンビ ル 2 4 を開閉するためにアンビル 2 4 のタブ 2 7 が挿入される開口 4 5 を含む。閉鎖チュ ーブ40、42内に、近位スパインチューブ46を配置することができる。近位スパイン チューブ46内に、かさ歯車組立体52によって第2(または遠位)駆動シャフト50に 接続された第1の回転(または近位)駆動シャフト48を配置することができる。第2の 駆動シャフト50は、螺旋ねじシャフト36の近位駆動歯車56に係合する駆動歯車54 に接続されている。垂直かさ歯車52bが、近位スパインチューブ46の遠位端部の開口 57内に回転可能に配置することができる。遠位スパインチューブ58を用いて、第2の 駆動シャフト50および駆動歯車54、56を覆うことができる。第1の駆動シャフト4 8、第2の駆動シャフト50、および関節動作組立体(例えば、かさ歯車組立体52a~ 5 2 c) は、本明細書では、総称して「主駆動シャフト組立体」と呼ぶこともある。閉鎖 チューブ40、42は、後述するように、アンテナの一部として機能しうるように導電材 料(金属など)から形成することができる。主駆動シャフト組立体の構成要素(例えば、 駆動シャフト48、50)は、非導電材料(プラスチックなど)から形成することができ る。

[0024]

[0025]

様々な実施形態によると、図7~図10に示されているように、外科器具は、ハンドル6内にバッテリ64を含むことができる。例示されている実施形態は、エンドエフェクタ12内の切断器具の配置および荷重の力について使用者にフィードバックする。加えて、この実施形態は、使用者が発射トリガー18を引く際の力を利用して器具10に動力を供

20

30

40

50

給することができる(いわゆる「動力補助」モード)。例示されている実施形態に示され ているように、ハンドル6は、互いに嵌合してハンドル6の外面を形成する下部外面部品 5 9 、 6 0 および上部外面部品 6 1 、 6 2 を含む。ハンドル部品 5 9 ~ 6 2 は、プラスチ ックなどの非導電材料から形成することができる。バッテリ64を、ハンドル6のピスト ルグリップ部分26内に配置することができる。バッテリ64は、ハンドル6のピストル グリップ部分26の上部内に配置されたモータ65に電力を供給する。バッテリ64は、 例えば、LiCo0,やLiNi0,などのリチウムイオン化学またはニッケル水素化学 などを含む任意の適当な構造または化学に従って製造することができる。様々な実施形態 によると、モータ65は、約5000RPM~100,000RPMの最大回転速度を有 するDCブラシ駆動モータとすることができる。モータ64は、第1のかさ歯車68およ び第2のかさ歯車70を含む90度かさ歯車組立体66を駆動することができる。かさ歯 車組立体66は、遊星歯車組立体72を駆動することができる。遊星歯車組立体72は、 駆動シャフト76に接続されたピニオン歯車74を含むことができる。ピニオン歯車74 は、駆動シャフト82によって螺旋歯車ドラム80を駆動する、噛合するリング歯車78 を駆動することができる。リング84を、螺旋歯車ドラム80に螺合させることができる 。したがって、モータ65が回転すると、リング84が、間に配置されたかさ歯車組立体 66、遊星歯車組立体72、およびリング歯車78によって螺旋歯車ドラム80に沿って 移動する。

[0026]

ハンドル 6 は、操作者が発射トリガー 2 0 をハンドル 6 のピストルグリップ部分 2 6 に向かって引いて(または閉じて)エンドエフェクタ 1 2 で切断 / ステープル 留め動作を行ったことを検出するために発射トリガー 2 0 と通信するモータ運転センサ 1 1 0 も含むことができる。このセンサ 1 1 0 は、例えば、レオスタットすなわち可変抵抗器などの助きを検出し、モータ 6 5 に供給される電圧(電力)を示す電気信号を送信する。センサ 1 1 0 がこの動きを検出し、モータ 6 5 に供給される電圧(電力)を示す電気信号を送信する。センサ 1 1 0 が可変抵抗器などである場合、モータ 6 5 の回転は、発射トリガー 2 0 の運動量に通常なわち閉じた場合、モータ 6 5 の回転速度が比較的低い。発射トリガー 2 0 が、完全に引かれた、すなわち完全に閉じた位置に位置する場合、モータ 6 5 の回転速度が最大となる。言い換えれば、使用者が発射トリガー 2 0 を強く引けば引く程、モータ 6 5 に供給される電圧が大きくなり、回転速度が大きくなる。別の実施形態では、例えば、制御ユニット(詳細を後述)は、モータ 6 5 を制御するために、センサ 1 1 0 からの入力に基づいてモータ 6 5 に P W M 制御信号を出力することができる。

[0027]

ハンドル6は、発射トリガー20の上部に近接した中間ハンドル部品104を含むことができる。ハンドル6は、中間ハンドル部品104のポストと発射トリガー20との間に接続された付勢ばね112を含むことができる。この付勢ばね112は、発射トリガー20を完全な開位置に付勢することができる。このように、操作者が発射トリガー20を解放すると、付勢ばね112は、発射トリガー20を開位置に引き、センサ110の作動を停止し、モータ65の回転を停止する。さらに、使用者が発射トリガー20を閉じる際にはいつも、付勢ばね112によって、使用者が閉鎖動作に対して抵抗を感じる。これにより、使用者が、モータ65による回転の程度についてのフィードバックを受ける。さらに、操作者が、発射トリガー20を引くのを停止すると、センサ110に力がかからなくなって、モータ65が停止する。したがって、使用者は、エンドエフェクタ12の配置を停止することができるため、切断 / 締結動作の制御の手段が得られる。

[0028]

螺旋歯車ドラム80の遠位端部は、ピニオン歯車124に噛合するリング歯車122を駆動する遠位駆動シャフト120を含む。ピニオン歯車124は、主駆動シャフト組立体の第1の駆動シャフト48に接続されている。このように、モータ65の回転により、主駆動シャフト組立体が回転し、上記したように、エンドエフェクタ12が作動する。

20

30

40

50

[0029]

螺旋歯車ドラム80に螺合したリング84は、スロットアーム90のスロット88内に配置されるポスト86を含むことができる。スロットアーム90は、ハンドル外面部品59と60との間に接続されたピボットピン96を収容する開口92をその反対側の端部94に有する。ピボットピン96は、発射トリガー20の開口100および中間ハンドル部品104の開口102をも通って配置される。

[0030]

加えて、ハンドル6は、モータ逆回転(またはストローク終了)センサ130およびモータ停止(またはストローク開始)センサ142を含むことができる。様々な実施形態では、モータ逆回転センサ130は、リング84が螺旋歯車ドラム80の遠位端部に達すると、螺旋歯車ドラム80に螺合したリング84がモータ逆回転センサ130に接触して作動させるように、螺旋歯車ドラム80の遠位端部に配置されたリミットスイッチとすることができる。モータ逆回転センサ130は、作動すると、制御ユニットに信号を送信し、この制御ユニットが、モータ65の回転方向を逆転する信号をモータ65に送信し、切断動作後にエンドエフェクタ12のナイフ32が引き戻される。

[0031]

モータ停止センサ 1 4 2 は、例えば、通常は閉じたリミットスイッチとすることができる。様々な実施形態では、このセンサ 1 4 2 は、リング 8 4 が螺旋歯車ドラム 8 0 の近位端部に達するとリング 8 4 がスイッチ 1 4 2 を作動させるように、螺旋歯車ドラム 8 0 の近位端部に配置することができる。

[0032]

動作の際、器具10の操作者が発射トリガー20を引くと、センサ110が、発射トリガー20の移動を検出して、制御ユニットに信号を送信し、この制御ユニットがモータ65に信号を送信し、モータ65が、操作者が発射トリガー20を引いた力に比例した速度で順方向に回転する。モータ65の順方向回転により、遊星歯車組立体72の遠位端部のリング歯車78が回転し、これにより螺旋歯車ドラム80が回転し、螺旋歯車ドラム80に索合したリング84がこの螺旋歯車ドラム80に沿って遠位側に移動する。螺旋歯車ドラム80の回転はまた、上記した主駆動シャフト組立体を駆動し、これによりエンドエフェクタ12内でナイフ32が配置される。すなわち、ナイフ32およびスレッド33が溝型部材22を長さ方向に移動して、エンドエフェクタ12内にクランプされた組織を切断する。また、ステープル留め型エンドエフェクタが用いられている実施形態では、エンドエフェクタ12のステープル留め動作も行われる。

[0033]

エンドエフェクタ12の切断/ステープル動作が完了するまでには、螺旋歯車ドラム80のリング84が、螺旋歯車ドラム80の遠位端部に到達しており、モータ逆回転センサ130が作動して、制御ユニットに信号を送信し、この制御ユニットがモータ65に信号を送信して、モータ65が逆回転する。これにより、ナイフ32が引き戻され、螺旋歯車ドラム80の近位端部に戻る。

[0034]

中間ハンドル部品104は、図8および図9に最もよく示されているように、スロットアーム90に係合する後部肩106を含む。中間ハンドル部品104はまた、発射トリガー20に係合する前進運動ストッパー107も有する。スロットアーム90の運動は、上記したように、モータ65の回転によって制御されている。リング84が螺旋歯車ドラム80の近位端部から遠位端部に移動する際にスロットアーム90が反時計回りの方向に回転する。したがって、使用者が発射トリガー20を引くと、発射トリガー20が中間ハンドル部品104の前進運動ストッパー107に係合して、中間ハンドル部品104が反時計回りの方向に回転する。しかしながら、スロットアーム90に係合している後部肩106により、中間ハンドル部品104は、スロットアーム90が許容する範囲で反時計回りの方向に回転することができる。このように、何らかの理由でモータ65が回転を停止しなければならない場

20

30

40

50

合、スロットアーム90の回転が停止し、中間ハンドル部品104がスロットアーム90 によって反時計回りの方向に自由に回転できないため、使用者は発射トリガー20をさら に引くことができない。

[0035]

閉鎖トリガー18を引いてエンドエフェクタ12のアンビル24を閉じる(またはクラ ンプする)ための例示的な閉鎖システムの構成要素が、図7 図10に示されている。例 示されている実施形態では、閉鎖システムは、閉鎖トリガー18およびヨーク250の両 方の整合した開口に挿入されたピン251によって閉鎖トリガー18に接続されたヨーク 2 5 0 を含む。閉鎖トリガー18の回転中心となるピボットピン252を、ピン251が 閉鎖トリガー18内に挿入される位置からずれた閉鎖トリガー18の別の開口内に挿入す る。したがって、閉鎖トリガー18が引かれると、ヨーク250がピン251で取り付け られている閉鎖トリガー18の上部が反時計回りの方向に回転する。ヨーク250の遠位 端部が、ピン254によって第1の閉鎖ブラケット256に接続されている。第1の閉鎖 ブラケット256は、第2の閉鎖ブラケット258に接続されている。閉鎖ブラケット2 56、258は、集合的に、これらの長さ方向の運動によって近位閉鎖チューブ40が長 さ方向に移動するように、近位閉鎖チューブ40(図4を参照)の近位端部が収容される 開口を画定している。器具10は、近位閉鎖チューブ40内に配置された閉鎖ロッド26 0 も含む。閉鎖ロッド 2 6 0 は、窓 2 6 1 を含んでいてもよく、この窓 6 1 内には、この 閉鎖ロッド260をハンドル6に固定して接続するために、例示されている実施形態では 下部外面部品59などのハンドル外面部品の1つのポスト263が配置される。このよう に、近位閉鎖チューブ40は、閉鎖ロッド260に対して長さ方向に移動することができ る。閉鎖ロッド260は、近位スパインチューブ46のキャビティ269内に適合し、キ ヤップ271(図4を参照)によってキャビティ269内部に保持される遠位カラー26 7も含むことができる。

[0036]

動作の際、閉鎖トリガー18が引かれてヨーク250が回転すると、閉鎖ブラケット2 5 6 、 2 5 8 により、近位閉鎖チューブ 4 0 が遠位側(すなわち、器具 1 0 のハンドル端 部から離れる方向)に移動し、これにより遠位閉鎖チューブ42が遠位側に移動し、アン ビル24が、ピボット点25を中心にクランプすなわち閉位置まで回転する。閉鎖トリガ 1 8 がロック位置から解除されると、近位閉鎖チューブ40が近位側にスライドし、こ れにより遠位閉鎖チューブ42が近位側にスライドし、遠位閉鎖チューブ42の窓45内 に挿入されているタブ27によって、アンビル24が、クランプされていない開位置まで ピボット点25を中心に旋回する。このように、閉鎖トリガー18を引いてロックするこ とにより、操作者は、組織をアンビル24と溝型部材22との間にクランプすることがで き、切断/ステープル留め動作の後に、閉鎖トリガー18をロック位置から解除して、組 織のクランプを解除することができる。

[0037]

詳細を後述する制御ユニットは、ストローク終了センサ130、ストローク開始センサ 142、およびモータ運転センサ110からの出力を受信し、これらの入力に基づいてモ ータ65を制御することができる。例えば、閉鎖トリガー18をロックした後に操作者が 初めに発射トリガー20を引くと、モータ運転センサ110が作動する。ステープルカー トリッジ34がエンドエフェクタ12内に存在すると、カートリッジロックアウトセンサ (不図示)が閉じ、制御ユニットがモータ65に制御信号を出力し、モータ65が順方向 に回転する。エンドエフェクタ12がストロークの最後に達すると、モータ逆回転センサ 130が作動する。制御ユニットが、この出力をモータ逆回転センサ130から受信し、 モータ65を逆回転させることができる。ナイフ32が完全に引き戻されると、モータ停 止センサスイッチ142が作動して、制御ユニットがモータ65を停止させる。

[0038]

他の実施形態では、比例型センサ110の代わりに、オン・オフ型センサを用いること ができる。このような実施形態では、モータ65の回転速度は、操作者が加える力に比例

20

30

40

50

しない。むしろ、モータ65は、一定の速度で回転する。しかしながら、発射トリガー2 0が歯車駆動系路に噛合されているため、操作者は、力のフィードバックを受けることが できる。

[0039]

器具10は、ステープルカートリッジ34(または外科器具のタイプによっては別のタイプのカートリッジ)の状態、または閉鎖および発射の際のステープラの進行を決定するために、センサトランスポンダなどのエンドエフェクタ12に関連した様々な状態を検出するための多数のセンサトランスポンダをエンドエフェクタ12内に含むことができる。センサトランスポンダは、詳細を後述するように、誘導信号によって受動的に電力供給を受けることができるが、他の実施形態では、センサトランスポンダは、例えば、エンドエフェクタ12内のバッテリなどの遠隔電源によって電力供給を受けることができる。センサトランスポンダは、例えば、磁気抵抗センサ、光学センサ、電気機械センサ、RFIDセンサ、MEMSセンサ、運動センサ、または圧力センサを含むことができる。これらのセンサトランスポンダは、例えば、図11に示されているように、器具10のハンドル6内に収容できる制御ユニット300と通信することができる。

[0040]

図12に示されているように、様々な実施形態によると、制御ユニット300は、プロセッサ306および1つ以上のメモリユニット308を含むことができる。メモリ308に記憶された命令行動を実行することにより、プロセッサ306は、様々なエンドエークタのセンサトランスポンダおよび他のセンサ(モータ運転センサ110、ストロークにフセンサ130、およびストローク開始センサ142など)に基づいて、モータ65またはユーザーディスプレイ(不図示)などの器具10の様々な構成要素を制御することができる。制御ユニット300は、詳細を後述するように、センサテンスポンダから無線信号を受け取るために誘導素子302(例えば、コイルやアンテナト)を含むことができる。受信アンテナとして機能する誘導素子302ができる。が受け取る入力信号は、エンドエフェクタ12内のセンサトランスポンダからのデータを含むことができる。プロセッサ306は、このデータを用いて器具10の様々な点を制御することができる。

信号をセンサトランスポンダに送信するために、制御ユニット300は、信号を符号化するためのエンコーダ316、変調計画に従って信号を変調するための変調器318を含むことができる。誘導素子302は、送信アンテナとして機能することができる。制御ユニット300は、任意の適当な無線通信プロトコルおよび任意の適当な周波数(例えば、ISM帯域)を用いてセンサトランスポンダと通信することができる。また、制御ユニット300は、センサトランスポンダからの受信信号の周波数範囲とは異なる周波数範囲で信号を送信することができる。また、唯1つのアンテナ(誘導素子302)が図12に示されているが、他の実施形態では、制御ユニット300は、別個の受信アンテナと送信ア

[0042]

ンテナを有することができる。

[0041]

様々な実施形態によると、制御ユニット300は、マイクロコントローラ、マイクロプロセッサ、フィールド・プログラマブル・ゲート・アレイ(FPGA)、1つ以上の他のタイプの集積回路(例えば、RF受信機やPWMコントローラ)、および/または個別受動構成要素を含むことができる。制御ユニットはまた、システム・オン・チップ(SoC)またはシステム・イン・パッケージ(SIP)などとして具現することもできる。

[0 0 4 3]

図11に示されているように、制御ユニット300を、器具10のハンドル6内に収容することができ、器具10の1つ以上のセンサトランスポンダ368を、エンドエフェクタ12内に配置することができる。エンドエフェクタ12内のセンサトランスポンダ36 8へ、またはセンサトランスポンダ368から電力を供給および/またはデータを送信す

20

30

40

50

るためには、制御ユニット300の誘導素子302を、回転接合部29の遠位側のシャフト8に位置付けられた第2の誘導素子(例えば、コイル)320に誘導結合することができる。第2の誘導素子320は、導電シャフト8から電気的に絶縁されているのが好ましい。

[0044]

第2の誘導素子320は、絶縁された導電ワイヤ322によって、好ましくは関節動作ピポット14の遠位側のエンドエフェクタ12に近くに配置された遠位誘導素子(例えば、コイル)324に接続することができる。ワイヤ322は、導電ポリマーおよび/または金属(銅など)から形成することができ、関節動作ピボット14によって損傷を受けずにこの関節動作内を通過できるように十分な可撓性を有することができる。遠位誘導素子324は、例えば、エンドエフェクタ12のカートリッジ34内のセンサトランスポンダ368に誘導結合することができる。詳細を後述するように、センサトランスポンダ368は、遠位コイル324に誘導結合するためのアンテナ(またはコイル)、センサ、および無線通信信号を送受信するための集積制御電子部品を含むことができる。

[0045]

センサトランスポンダ368は、センサトランスポンダ368に受動的に電力供給するために、遠位誘導素子326から受信した誘導信号の電力の一部を用いることができる。誘導信号から十分な電力供給を受けたら、トランスポンダ368は、(i)このトランスポンダ368と遠位誘導素子324との間の誘導結合、(ii)ワイヤ322、および(iii)第2の誘導素子320と制御ユニット300との間の誘導結合によって、ハンドル6内の制御ユニット300に対してデータを送受信することができる。このように、制御ユニット300は、回転接合部29などの複雑な機械接合部を通る直接的な有線接続および/または直接的な有線接続を維持するのが困難なシャフト8からエンドエフェクタ12への直接的な有線接続を維持するのが困難なシャフト8からエンドエフェクタ12への直接的な有線接続を維持するのが困難なシャフト8からエンドエフェクタ12への直接的な有線接続を加いることなく、エンドエフェクタ12内のトランスポンダ368と通信することができる。加えて、誘導素子間の距離(例えば、(i)トランスポンダ368と遠位誘導素子324、および(ii)第2の誘導素子320と制御ユニット300との間の間隔)が固定されており、既知であるため、結合を、エネルギーの誘導伝送にとって最適にすることができる。また、比較的低い出力信号を用いて、器具10の使用環境における他のシステムとの干渉を最小限にするために、この距離を比較的短くすることができる。

[0046]

図12の実施形態では、制御ユニット300の誘導素子302は、この制御ユニット300に比較的近接して配置されている。他の実施形態によると、図13に示されているように、制御ユニット300の誘導素子302は、この誘導素子302が第2の誘導素子320に近接して、このような実施形態の誘導結合の距離が短縮されるように、回転接合部29に近接して位置付けることができる。別法では、制御ユニット300、従って誘導素子302も、間隔を短縮するために第2の誘導素子320に近接して位置付けることができる。

[0047]

他の実施形態では、2つよりも多いまたは少ない誘導結合を用いることができる。例えば、ある実施形態では、外科器具10は、ハンドル6内の制御ユニット300と、エンドエフェクタ12内のトランスポンダ368との間の1つの誘導結合を用いることで、誘導素子320、324およびワイヤ322を排除することができる。もちろん、このような実施形態では、ハンドル6内の制御ユニット300とエンドエフェクタ12内のトランスポンダ368との間の距離がより大きくなるため、より強い信号が必要となるであろう。また、3つ以上の誘導結合を用いることもできる。例えば、外科器具10が、直接的な有線接続を維持するのが困難な複数の複雑な機械接合部を有する場合、このような各接合部を跨ぐために誘導結合を用いることができる。例えば、図14に示されているように、回転接合部29の遠位側の誘導素子324に接続され、ワイヤ323によって関節動作ピボット14の遠

20

30

40

50

位側の誘導素子325、326が接続された状態で、回転接合部29の両側および関節動作ピボット14の両側に誘導結合を用いることができる。この実施形態では、誘導素子326は、センサトランスポンダ368と通信することができる。

[0048]

加えて、トランスポンダ368は、多数の異なるセンサを含むことができる。例えば、トランスポンダ368は、アレイ状にセンサを含むことができる。さらに、エンドエフェクタ12は、遠位誘導素子324、従って制御ユニット300とも通信する多数のセンサトランスポンダ368を含むことができる。また、誘導素子320、324は、フェライト磁心を含んでも含まなくてもよい。既に述べたように、これらの誘導素子は、好ましくは器具10の導電外側シャフト(またはフレーム)(例えば、閉鎖チューブ40、42)から絶縁され、ワイヤ322も、好ましくは外側シャフト8から絶縁される。

[0049]

図15は、溝型部材22の遠位端部のカートリッジ34内に保持または埋め込まれたトランスポンダ368を含むエンドエフェクタ12の線図である。トランスポンダ368は、エポキシなどの適当な接着材料でカートリッジ34に接続することができる。この実施形態では、トランスポンダ368は、磁気抵抗センサを含む。アンビル24も、トランスポンダ368に面した永久磁石369を遠位端部に含む。エンドエフェクタ12も、この例の実施形態ではスレッド33に接続された永久磁石370を含む。これにより、トランスポンダ368が、エンドエフェクタ12の開と閉の両方と(アンビル24が開閉する際に、永久磁石369がトランスポンダに対して離れるまたは近づくため)、ステープル留め/切断動作の完了(切断動作の一部としてスレッド33が溝型部材22を移動する際に、永久磁石370がトランスポンダ368に向かって移動するため)を検出することができる。

[0050]

図15は、ステープルカートリッジ34のステープル380およびステープルドライバ382も示している。既に説明したように、様々な実施形態によると、スレッド33が溝型部材22を横断すると、スレッド33がステープルドライバ382を駆動させ、これによりステープル380がエンドエフェクタ12内に保持された切断された組織内に進入し、ステープル380がアンビル24によって形成される。上記したように、このような外科切断 / 締結器具は、本発明を有利に利用できる外科器具の1タイプである。本発明の様々な実施形態は、1つ以上のセンサトランスポンダを有するあらゆるタイプの外科器具に用いることができる。

[0051]

上記した実施形態では、バッテリ64は、器具10の発射動作のために少なくとも部分的に電力を供給する。したがって、この器具は、いわゆる「動力補助」装置と呼ぶことができる。このような動力補助装置のさらなる詳細および別の実施形態は、参照して本明細書に組み入れる米国特許出願第11/343,573号に開示されている。しかしながら、器具10は必ずしも、動力補助装置とする必要はなく、本発明の特徴を利用できる1タイプの装置の一例にすぎないことを理解されたい。例えば、器具10は、バッテリ64によって電力が供給され、かつ制御ユニット300によって制御されるユーザーディスプレイ(LCDまたはLEDディスプレイなど)を含むことができる。エンドエフェクタ12内のセンサトランスポンダ368からのデータを、このようなディスプレイに表示することができる。

[0052]

別の実施形態では、器具10のシャフト8は、例えば、近位閉鎖チューブ40および遠位閉鎖チューブ42を含み、全体として、センサトランスポンダ368に信号を放射し、かつセンサトランスポンダ368から放射される信号を受信することで、制御ユニット300のアンテナの一部として機能することができる。このように、エンドエフェクタ12内の遠隔センサへの信号または遠隔センサからの信号は、器具10のシャフト8によって通信することができる。

20

30

40

50

[0053]

近位閉鎖チューブ40は、プラスチックなどの非導電材料から形成することができる下部および上部外面部品59~62によって、その近位端部で接地することができる。近位閉鎖チューブ40および遠位閉鎖チューブ42内の駆動シャフト組立体の構成要素(第1の駆動シャフト48および第2の駆動シャフト50を含む)は、同様にプラスチックなどの非導電材料から形成することができる。さらに、エンドエフェクタ12の構成要素のに近い24や溝型部材22など)は、アンテナの一部として機能しつるように、遠位アンビル24や溝型部材22など)は、アンテナの一部として機能して電気接触させる)ことができる。さらに、センサトランスポンダ368は、アンテナとして機能するシャトのよびエンドエフェクタ12の構成要素から電気的に絶縁されるように位置付けることができる。アンテナとして機能するシャンのおよびエンドエフェクタ12の構成要素から電気的に絶縁されるよどの非導電材料から形成できるカートリッジ34内に位置付けることができる。アンテナとして機能するシャフト8の遠位端部(遠位閉鎖チューブ42の遠位端部など)およびエンドエフェクタ12の各部をセンサ368に比較的近接させることができ、これにより、送信する信号の出力を低いレベルに維持して、器具10の使用環境における他のシステムとの干渉を最小限にするか、または低減する。

[0054]

このような実施形態では、図16に示されているように、制御ユニット300は、導電リンク400(ワイヤなど)によって近位閉鎖チューブ40などの器具10のシャフト8に電気的に結合することができる。閉鎖チューブ40、42などの外側シャフト8の各部は、センサ368に信号を放射し、かつセンサ368から放射される信号を受信することで、制御ユニット300のアンテナの一部として機能することができる。制御ユニット300が受信した入力信号は、復調器310で復調し、デコーダ312で復号することができる(図12を参照)。この入力信号は、エンドエフェクタ12のセンサ368からのデータを含むことができ、このデータを、プロセッサ306がモータ65やユーザーディスプレイなどの器具10の様々な部分を制御するために用いることができる。

[0055]

エンドエフェクタ 1 2 内のセンサ 3 6 8 へ、またはセンサから信号を送信するためには、リンク 4 0 0 が、制御ユニット 3 0 0 を、遠位閉鎖チューブ 4 2 に電気的に接続できる近位閉鎖チューブ 4 0 などの器具 1 0 のシャフト 8 の構成要素に接続することができる。遠位閉鎖チューブ 4 2 は、プラスチックカートリッジ 3 4 (図 3 を参照)内に配置できる遠隔センサ 3 6 8 から好ましくは電気的に絶縁される。上記したように、溝型部材 2 2 およびアンビル 2 4 (図 3 を参照)などのエンドエフェクタ 1 2 の構成要素は、導電性とし、同様にアンテナの一部として機能するように遠位閉鎖チューブ 4 2 と電気的に接触させることができる。

[0056]

シャフト8が制御ユニット300のアンテナとして機能する場合、制御ユニット300は、直接的な有線接続を用いずに、エンドエフェクタ12内のセンサ368と通信することができる。加えて、シャフト8と遠隔センサ368との間の距離が固定されており、既知であるため、出力レベルを低いレベルに最適化し、器具10の使用環境における他のシステムとの干渉を最小限にすることができる。センサ368は、上記したように、制御ユニット300に信号を放射するため、および制御ユニット300からの信号を受信するための通信回路を含むことができる。この通信回路は、センサ368と一体にすることができる。

[0057]

別の実施形態では、シャフト8および/またはエンドエフェクタ12の構成要素は、遠隔センサ368のためのアンテナとして機能することができる。このような実施形態では、遠隔センサ368は、シャフト(近位閉鎖チューブ40に電気的に接続することができる遠位閉鎖チューブ42など)に電気的に接続され、制御ユニット300は、このシャフト8から絶縁されている。例えば、センサ368は、エンドエフェクタ12の導電構成要

素(溝型部材 2 2 など)に接続することができ、この導電構成要素は、シャフトの導電構成要素(例えば、閉鎖チューブ 4 0 、 4 2 など)に接続することができる。別法では、エンドエフェクタ 1 2 は、遠隔センサ 3 6 8 を遠位閉鎖チューブ 4 2 に接続するワイヤ(不図示)を含むことができる。

[0058]

一般に、器具10などの外科器具は、使用前に洗浄および滅菌される。ある滅菌技術では、図17および図18に示されているように、器具10を、プラスチックまたはTYVEK容器またはバッグなどの密閉された容器280内に配置する。次に、この容器と器具とを、線、×線、または高エネルギー電子などの容器を透過できる放射線の場に配置する。この放射線が、器具10上および容器280内の細菌を死滅させる。次に、滅菌された器具10を滅菌容器280内に保管することができる。密閉された滅菌容器280は、医療施設または他の使用環境で開封されるまで器具10の滅菌を維持する。放射線の代わりに、エチレンオキシドや蒸気などの器具10の他の滅菌手段を用いることができる。

[0059]

線などの放射線を用いて器具10を滅菌すると、制御ユニット300の構成要素、特にメモリ308およびプロセッサ306が損傷して不安定になることがある。したがって、本発明の様々な実施形態に従って、器具10のパッケージングおよび滅菌の後に制御ユニット300をプログラムすることができる。

[0060]

図17に示されているように、ハンドヘルド装置とすることができる遠隔プログラミング装置320は、制御ユニット300と無線通信することができる。遠隔プログラミング装置320は、制御ユニット300に無線信号を送信し、この無線信号は、制御ユニット300により受信され、制御ユニット300をプログラムし、このプログラム動作の際に制御ユニット300に電力を供給する。このように、バッテリ64は、プログラミング動作の際に制御ユニット300に電力を供給する必要がない。様々な実施形態によると、制御ユニット300にダウンロードされるプログラミングコードは、1MB以下などの比較的小さいサイズにすることができるため、所望に応じて、比較的低いデータ転送速度の通信プロトコルを用いることができる。また、低出力信号を用いることができる。遠隔プログラミング装置320を、外科器具10と物理的に近接させることができる。

[0061]

図19を参照すると、制御ユニット300は、遠隔プログラミング装置320から無線信号を受け取るための誘導コイル402を含むことができる。制御ユニット300がバッテリ64から電力供給を受けていない場合は、電源回路404が受信した信号の一部を用いて、この制御ユニット300に電力を供給することができる。

[0062]

受信アンテナとして機能するコイル402が受信した入力信号は、変調器410によって変調し、デコーダ412によって復号することができる。この入力信号は、メモリ308の不揮発性メモリ部分に記憶できるプログラム命令(例えば、コード)を含むことができる。プロセッサ306は、器具10が動作している時にコードを実行することができる。例えば、コードにより、プロセッサ306を作動させて、センサ368から受信したデータに基づいてモータ65などの器具10の様々なサブシステムに制御信号を出力することができる。

[0063]

制御ユニット300は、プロセッサ306によって実行するためのブートシーケンスコードを含む不揮発性メモリユニット414も含むことができる。滅菌後のプログラミング動作の際に、制御ユニット300が、遠隔制御ユニット320から送信された信号から十分な電力を受け取ると、プロセッサ306は、プロセッサ306にオペレーティングシステムをロードすることができるブートシーケンスコード(「ブートローダー」)414をまず実行することができる。

[0064]

30

10

20

20

30

40

50

制御ユニット300は、例えば、肯定応答およびハンドシェーク信号などの信号を遠隔プログラミングユニット320に返信することもできる。制御ユニット300は、プログラミング装置320に送信される信号を符号化するためのエンコーダ416、および変調計画に従って信号を変調するための変調器418を含むことができる。コイル402は、送信アンテナとして機能することができる。制御ユニット300および遠隔プログラミング装置320は、任意の適当な無線通信プロトコル(例えば、ブルートゥース)および任意の適当な周波数(例えば、ISM帯域)を用いて通信することができる。また、制御ユニット300は、遠隔プログラミングユニット320から受信する信号の周波数範囲とは異なる周波数範囲で信号を送信することができる。

[0065]

図20は、本発明の様々な実施形態に従った遠隔プログラミング装置320の簡易線図である。図20に示されているように、遠隔プログラミングユニット320は、主制御基板230およびブーストアンテナ基板232を含むことができる。主制御基板230は、コントローラ234、電力モジュール236、およびメモリ238を含むことができる。メモリ238は、コントローラ234の動作命令、および外科器具10の制御ユニット300に送信されるプラグラミング命令を記憶することができる。電力モジュール236は、内部バッテリ(不図示)または外部ACまたはDC電源(不図示)から遠隔プログラミング装置320の構成要素に安定したDC電圧を供給することができる。

[0066]

ブーストアンテナ基板 2 3 2 は、 I ² Cバスなどによってコントローラ 2 3 4 と通信する結合回路 2 4 0 を含むことができる。結合回路 2 4 0 は、アンテナ 2 4 4 によって外科器具の制御ユニット 3 0 0 と通信することができる。結合回路 2 4 0 は、制御ユニットと通信するために、変調 / 復調および符号化 / 復号の操作を行うことができる。他の実施形態によると、遠隔プログラミング装置 3 2 0 は、変調器、復調器、エンコーダ、およびデコーダを別個に有することができる。図 2 0 に示されているように、ブーストアンテナ基板 2 3 2 は、送信出力増幅器 2 4 6、アンテナ 2 4 4 のための整合回路 2 4 8、および信号を受信するための濾波 / 増幅器 2 4 9 も含むことができる。

[0067]

他の実施形態によると、図20に示されているように、遠隔プログラミング装置は、USBおよび/またはRS232インターフェースなどによって、PCやラップトップなどのコンピュータ装置460と通信することができる。このような構成では、演算装置460のメモリは、制御ユニット300に送信されるプログラム命令を記憶することができる。別の実施形態では、演算装置460は、プログラミング命令を制御ユニット300に送信するために無線通信システムと共に構成することができる。

[0068]

加えて、他の実施形態によると、制御ユニット 3 0 0 と遠隔プログラミング装置 3 2 0 との間の誘導結合を用いる代わりに、容量結合を用いることもできる。このような実施形態では、制御ユニット 3 0 0 は、遠隔プログラミングユニット 3 2 0 と同様に、コイルの代わりにプレートを有することができる。

[0069]

別の実施形態では、制御ユニット300と遠隔プログラミング装置320との間の無線通信リンクを用いる代わりに、プログラミング装置320は、器具10の滅菌が維持されるように器具10が滅菌容器280内に入ったまま、制御ユニット300に物理的に接続することができる。図21は、このような実施形態に従ったパッケージングされた器具10の線図である。図22に示されているように、器具10のハンドル6は、外部接続インターフェース470を含むことができる。容器280は、器具10がこの容器280内にパッケージングされると、この器具10の外部接続インターフェース472をさらに含むことができる。プログラミング装置320は、容器280の外部の接続インターフェース472に接続して、プログラミング装置30と器具10の外部接続インターフェース470との間を有線接続する外部接続インターフェー

ス(不図示)を含むことができる。

[0070]

本発明の様々な実施形態が切断型外科器具に関連して説明された。しかしながら、他の実施形態では、ここに開示する本発明の外科器具は、切断型外科器具である必要はなく、むしろ遠隔センサトランスポンダを含むあらゆるタイプの外科器具に用いることができることを理解されたい。例えば、本発明の外科器具は、非切断内視鏡器具、把持器、ステープラ、クリップアプライヤ、アクセス装置、薬物/遺伝子治療送達装置、および超音波、RF、レーザーなどを用いたエネルギー装置とすることができる。加えて、本発明は、例えば、腹腔鏡器具に用いることができる。本発明はまた、従来の内視鏡器具および切開外科手術器具、ならびにロボット支援外科手術に用いることもできる。

[0071]

ここに開示する装置は、1回の使用で廃棄するように設計することができ、または複数回使用するように設計することもできる。しかしながら、いずれの場合も、この装置は、少なくとも1回使用した後に再使用するために再生することができる。この再生には、装置の分解ステップ、続く特定の部品の洗浄または交換ステップ、そして再組立ステップの任意の組合せを含むことができる。具体的には、この装置は、分解してから、装置の任意の数の特定の部品を、任意の組合せで選択的に交換または除去することができる。特定の部品の洗浄および/または交換の際に、本装置は、次の使用のために、外科手術の直前に再生設備で、または手術チームによって再組立てすることができる。当業者であれば、装置の再生は、分解、洗浄/交換、および再組立のために様々な技術を用いることができることを理解できよう。このような技術の使用および得られる再生された装置は、本明細書の範囲内である。

[0072]

特定の実施形態を用いて本発明を説明してきたが、これらの実施形態に対して様々な改良および変更を加えることができる。例えば、様々なタイプのエンドエフェクタを用いることができる。また、特定の構成要素の材料を開示したが、他の材料を用いることもできる。上記した説明および添付の特許請求の範囲は、このような全ての改良および変更を含むものとする。

[0073]

参照して本明細書に組み入れると述べた全ての特許文献、刊行物、または他の開示資料の全てまたは一部は、組み入れる資料が、本明細書に開示した定義、記載、または他の開示資料に相反しない程度に組み入れるものとする。したがって、必要な範囲で、ここに明確に記載した開示は、参照して本明細書に組み入れる全ての反する資料に対して優先されるものである。参照して本明細書に組み入れると述べたが、ここに開示する定義、記載、または他の開示資料に相反する全ての資料またはその一部は、組み入れる資料と本開示資料との間に対立が起こらない範囲で組み入れるものとする。

[0074]

〔実施の態様〕

(1)外科器具において、

少なくとも1つのセンサトランスポンダを有するエンドエフェクタと、

前記エンドエフェクタに接続された遠位端部を有するシャフトと、

前記シャフトの近位端部に接続されたハンドルであって、制御ユニットを有する、ハンドルと、

を含み、

前記制御ユニットは、少なくとも1つの誘導結合によって前記少なくとも1つのセンサトランスポンダと通信する、外科器具。

(2)実施態様(1)に記載の外科器具において、

前記ハンドルは、

前記制御ユニットと通信するモータであって、

前記モータは、前記シャフトの主駆動シャフト組立体を駆動し、

10

20

30

40

前記主駆動シャフト組立体は、エンドエフェクタを駆動する、

モータと、

前記モータに電力を供給するためのバッテリと、

をさらに含む、外科器具。

(3)実施態様(2)に記載の外科器具において、

前記ハンドルは、

操作者によって引かれると、前記エンドエフェクタに前記エンドエフェクタ内に位置付けられた物体をクランプさせる閉鎖トリガーと、

操作者によって引かれると前記モータを作動させる、前記閉鎖トリガーとは別個の発射 トリガーと、

10

をさらに含む、外科器具。

(4)実施態様(1)に記載の外科器具において、

前記制御ユニットは、

プロセッサと、

前記プロセッサと通信するメモリと、

信号の受信および送信のために前記プロセッサと通信する誘導素子と、

を含む、外科器具。

(5)実施態様(1)に記載の外科器具において、

前記外科器具は、前記シャフトを回転させるための少なくとも1つの回転接合部を含み

20

30

前記外科器具は、

前記回転接合部の遠位側の前記シャフト内に配置され、前記制御ユニットに誘導結合された第1の誘導素子と、

前記シャフト内に配置され、前記少なくとも1つのセンサトランスポンダに誘導結合された第2の誘導素子と、

をさらに含む、外科器具。

[0075]

(6)実施態様(5)に記載の外科器具において、

前記第2の誘導素子は、前記エンドエフェクタに近接して配置され、

前記第2の誘導素子は、前記シャフト内に配置された可撓性の導電ワイヤによって前記 第1の誘導素子に接続されている、外科器具。

(7)実施態様(6)に記載の外科器具において、

前記シャフトは、前記第1の誘導素子と前記第2の誘導素子との間の関節動作ピボットを含む、外科器具。

(8)実施態様(1)に記載の外科器具において、

前記少なくとも1つのセンサトランスポンダは、磁気抵抗センサを含む、外科器具。

(9)実施態様(1)に記載の外科器具において、

前記少なくとも1つのセンサトランスポンダは、RFIDセンサを含む、外科器具。

(10)実施態様(1)に記載の外科器具において、

前記少なくとも1つのセンサトランスポンダは、電気機械センサを含む、外科器具。

40

[0076]

(11)実施態様(1)に記載の外科器具において、

前記外科器具は、内視鏡外科器具を含む、外科器具。

(12)実施態様(1)に記載のシステムにおいて、

前記エンドエフェクタは、移動可能な切断器具を含む、システム。

(13)実施態様(12)に記載の外科器具において、

前記エンドエフェクタは、ステープルカートリッジを含む、外科器具。

(14)外科器具において、

少なくとも1つのセンサトランスポンダを有するエンドエフェクタと、

前記エンドエフェクタに接続された遠位端部を有するシャフトと、

少なくとも1つの誘導結合によって前記少なくとも1つのセンサトランスポンダと通信 する制御ユニットと、

を含む、外科器具。

(15)実施態様(14)に記載の外科器具において、

前記制御ユニットは、

プロセッサと、

前記プロセッサと通信するメモリと、

信号を受信および送信するために前記プロセッサと通信する誘導素子と、

を含む、外科器具。

[0077]

(16)実施態様(14)に記載の外科器具において、

前記外科器具は、前記シャフトを回転させるために少なくとも1つの回転接合部を含み

前記外科器具は、

前記回転接合部の遠位側の前記シャフト内に配置され、前記制御ユニットに誘導結合された第1の誘導素子と、

前記シャフト内に配置され、前記少なくとも1つのセンサトランスポンダに誘導結合された第2の誘導素子と、

をさらに含む、外科器具。

(17)実施態様(16)に記載の外科器具において、

前記第2の誘導素子は、前記エンドエフェクタに近接して配置され、

前記第2の誘導素子は、前記シャフト内に配置された可撓性の導電ワイヤによって前記第1の誘導素子に接続されている、外科器具。

(18)実施態様(17)に記載の外科器具において、

前記シャフトは、前記第1の誘導素子と前記第2の誘導素子との間の関節動作ピボットを含む、外科器具。

(19)実施態様(16)に記載の外科器具において、

前記エンドエフェクタを作動させるためのモータと、

前記モータに電力を供給するために前記モータに接続されたバッテリと、

をさらに含む、外科器具。

(20)実施態様(19)に記載の外科器具において、

操作者によって引かれると、前記エンドエフェクタに前記エンドエフェクタ内に位置付けられた物体をクランプさせる閉鎖トリガーと、

操作者によって引かれると前記モータを作動させる、前記閉鎖トリガーとは別個の発射 トリガーと、

をさらに含む、外科器具。

[0078]

(21)方法において、

外科器具を用意するステップであって、

前記外科器具は、

少なくとも1つのセンサトランスポンダを有するエンドエフェクタと、

前記エンドエフェクタに連結された遠位端部を有するシャフトと、

前記少なくとも1つの誘導結合によって前記少なくとも1つのセンサトランスポンダ と通信する制御ユニットと、

を含む、

ステップと、

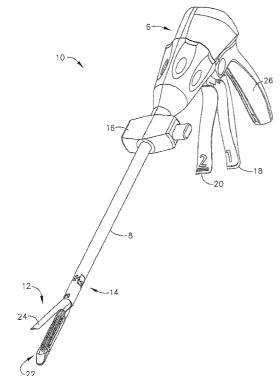
前記外科器具を滅菌するステップと、

前記外科器具を滅菌容器内に保管するステップと、

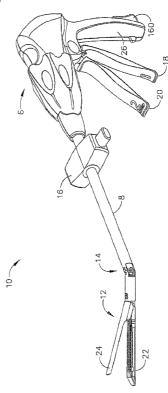
を含む、方法。

【図面の簡単な説明】

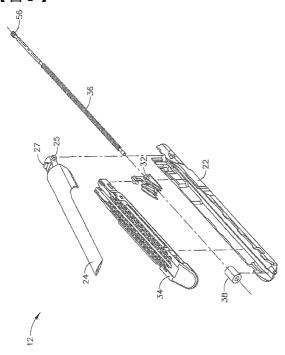
10

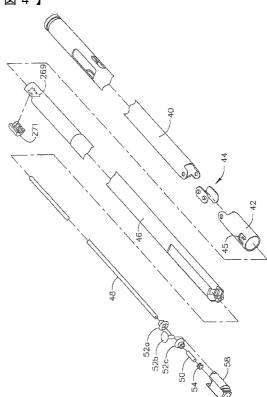

20

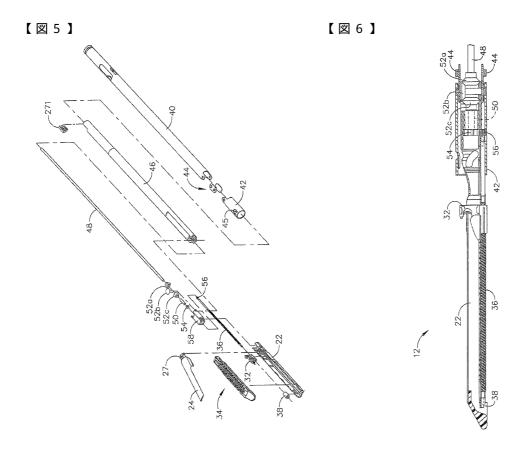
30

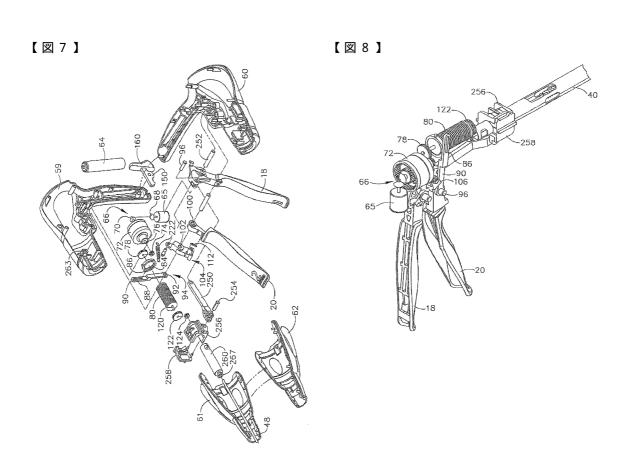

30

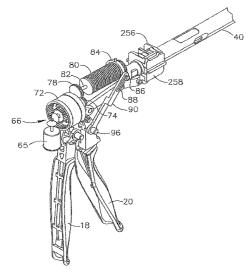
- [0079]
- 【図1】本発明の様々な実施形態に従った外科器具の斜視図である。
- 【図2】本発明の様々な実施形態に従った外科器具の斜視図である。
- 【図3】本発明の様々な実施形態に従った器具のエンドエフェクタの組立分解図である。
- 【図4】本発明の様々な実施形態に従った器具のシャフトの組立分解図である。
- 【図5】本発明の様々な実施形態に従った器具のエンドエフェクタおよびシャフトの組立 分解図である。
- 【図6】本発明の様々な実施形態に従ったエンドエフェクタの側面図である。
- 【図7】本発明の様々な実施形態に従った外科器具のハンドルの組立分解図である。
- 【図8】本発明の様々な実施形態に従ったハンドルの一部の斜視図である。
- 【図9】本発明の様々な実施形態に従ったハンドルの一部の斜視図である。
- 【図10】本発明の様々な実施形態に従ったハンドルの側面図である。
- 【図11】本発明の様々な実施形態に従った外科器具の斜視図である。
- 【図12】本発明の様々な実施形態に従った制御ユニットのブロック図である。
- 【図13】本発明の様々な実施形態に従った外科器具の斜視図である。
- 【図14】本発明の様々な実施形態に従った外科器具の斜視図である。
- 【図 1 5 】本発明の様々な実施形態に従ったセンサトランスポンダを含むエンドエフェクタの側面図である。
- 【図16】本発明の様々な実施形態に従った外科器具の斜視図である。
- 【図17】本発明の様々な実施形態に従った滅菌容器内の外科器具を示す図である。
- 【図18】図17の線18 18に沿って見た断面図である。
- 【図19】本発明の様々な実施形態に従った制御ユニットのブロック図である。
- 【図20】本発明の様々な実施形態に従った遠隔プログラミング装置のブロック図である
- 【図21】本発明の様々な実施形態に従ったパッケージングされた器具の線図である。
- 【図22】発明の様々な実施形態に従った外科器具の斜視図である。

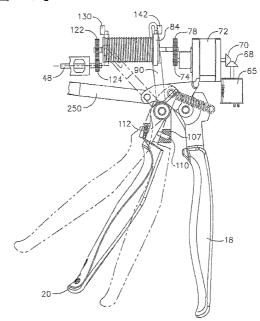

【図1】

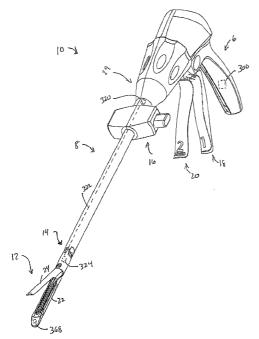

【図2】

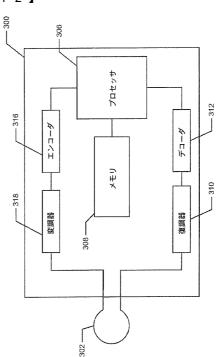


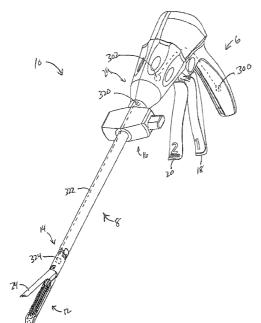

【図3】

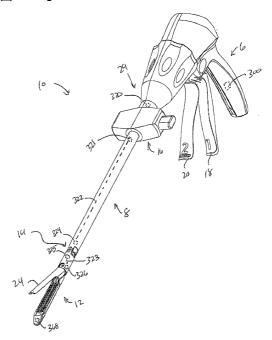

【図4】

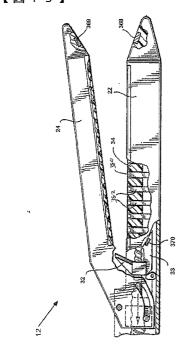


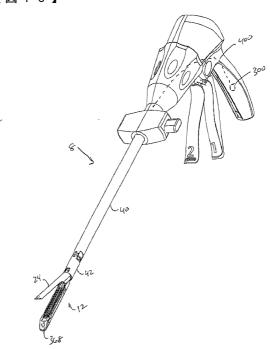

【図9】

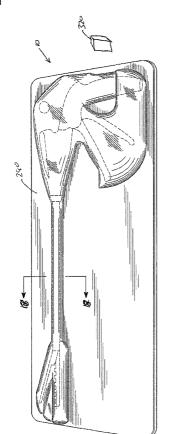

【図10】


【図11】

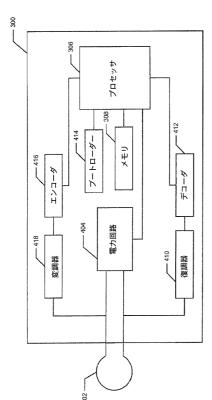

【図12】

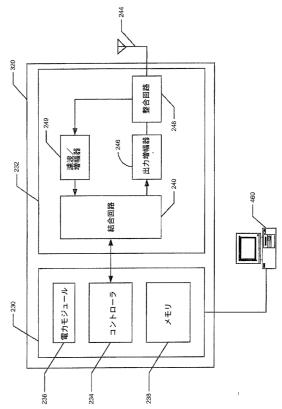

【図13】

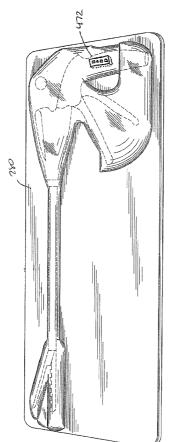

【図14】

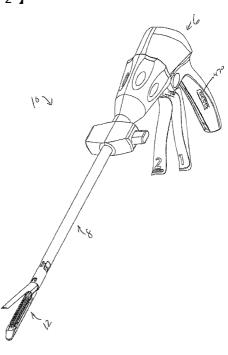

【図15】

【図16】


【図17】


【図18】


【図19】


【図20】

【図21】

【図22】

フロントページの続き

(72)発明者ジェイムズ・アール・ジョルダノアメリカ合衆国、45150オハイオ州、ミルフォード、チェストナットビュー・レーン 56

(72)発明者 フレデリック・イー・シェルトン・ザ・フォース アメリカ合衆国、45159 オハイオ州、ニュー・ビエナ、ピー・オー・ボックス 373

(72)発明者ジェフリー・エス・スウェイズアメリカ合衆国、45011オハイオ州、ハミルトン、バーチレー・ドライブ 7047

審査官 森林 宏和

(56)参考文献 国際公開第2004/019803(WO,A1)

特表2005-523105(JP,A)

米国特許出願公開第2006/0284730(US,A1)

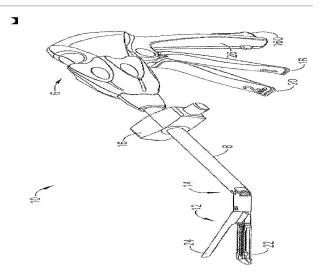
国際公開第2006/132992(WO,A1)

特開2005-028148(JP,A)

特表2009-506799(JP,A)

特開2005-144183(JP,A) 特表2004-532084(JP,A)

(58)調査した分野(Int.CI., DB名)


A 6 1 B 1 3 / 0 0 - 1 8 / 2 8

专利名称(译)	一种在控制单元和传感器应答器之间执行无线通信的手术器械		
公开(公告)号	JP5367269B2	公开(公告)日	2013-12-11
申请号	JP2008002020	申请日	2008-01-09
[标]申请(专利权)人(译)	伊西康内外科公司		
申请(专利权)人(译)	爱惜康完 - Sajeryi公司		
当前申请(专利权)人(译)	爱惜康完 - Sajeryi公司		
[标]发明人	ジェイムズアールジョルダ <i>ノ</i> フレデリックイーシェルトンザフォース ジェフリーエススウェイズ		
发明人	ジェイムズ·アール·ジョルダノ フレデリック·イー·シェルトン·ザ·フォース ジェフリー·エス·スウェイズ		
IPC分类号	A61B17/072		
CPC分类号	A61B17/00234 A61B17/07207 A61B50/30 A61B90/98 A61B2017/00022 A61B2017/00039 A61B2017 /00212 A61B2017/00221 A61B2017/00362 A61B2017/00398 A61B2017/00734 A61B2017/0688 A61B2017/07214 A61B2017/2927 A61B2017/320052 A61B2050/3015 A61B2050/314 A61B2090/065 A61B2090/0811 A61B17/00 A61B17/068 A61B2560/0266		
FI分类号	A61B17/10.310 A61B17/072 A61B17/295 A61B17/32.330 A61B19/00.502 A61B34/30		
F-TERM分类号	4C160/CC09 4C160/CC23 4C160/FF19 4C160/MM32 4C160/NN02 4C160/NN03 4C160/NN09 4C160 /NN12 4C160/NN13 4C160/NN14 4C160/NN15 4C160/NN23 4C160/NN30		
优先权	11/651715 2007-01-10 US		
其他公开文献	JP2008237881A		
外部链接	<u>Espacenet</u>		

摘要(译)

要解决的问题:提供诸如内窥镜器械或腹腔镜器械的手术器械,包括具有至少一个传感器应答器的末端执行器。 一种外科器械,包括轴,该轴具有连接到末端执行器的远端和连接到轴的近端的手柄。手柄包括通过至少一个电感耦合与传感器应答器通信的控制单元。手术器械可以是动力辅助马达驱动器,其包括用于在使用期间至少部分地向手术器械供电的电池。手术器械可以配置成将末端执行器上的负载反馈给用户。 .The 11

